

LA-UR-18-24313

Approved for public release; distribution is unlimited.

Title: An Introduction to Multiplicity Counting

Author(s): Root, Margaret A.

Intended for: Lecture at LANL

Issued: 2018-05-17

An Introduction to Multiplicity Counting

May 18, 2018

The Problem with Standard Coincidence Counting

There are 3 principal unknowns in neutron counting:

²⁴⁰Pu-effective mass, α, and M.

- Standard Coincidence Counting: Provides only 2 pieces of measured information, singles and doubles (or totals and coincidences)
 - To obtain an accurate assay, one must know a lot about the sample.
 - If the assumed information is incorrect, large errors can occur.
- Neutron Multiplicity Counting: 3 pieces of measured information are used with a mathematical model to deduce an assay that is far superior for most impure materials.

Multiplicity counting process

Multiplicity Shift Register

Multiplicity Distribution - 3.8 kg Pu Metal

Count Rates from the Multiplicity Shift Register

- P_n = # times a multiplicity of n is counted in the R + A gate
- Q_n = # times a multiplicity of n is counted in the A gate

 We get singles, doubles, and triples information from a combination of the moments of these distributions.

Singles

The singles rate is the sum of all of the single neutrons detected.

measured singles =
$$\sum_{n=0}^{N} Q_n$$

The singles rate is also sometimes referred to as the "Zeroth" moment of the accidentals distribution.

Doubles

The doubles are the difference in the 1st moments of the multiplicity distributions in the R+A and A Gates.

measured doubles =
$$\sum_{n=1}^{N} nP_n - \sum_{n=1}^{N} nQ_n$$

 The doubles obtained this way are <u>equivalent</u> to the real coincidences obtained with a standard shift register circuit – this provides a useful diagnostic for multiplicity shift register operation.

Triples

- The formula for calculating triples is intuitively much harder because the information in the R+A and A gates is correlated.
- The triples are the difference in the 2nd moments minus a cross correlation term that depends on the doubles.

measured triples =
$$\sum_{n=2}^{N} \frac{n(n-1)}{2} P_n - \sum_{n=2}^{N} \frac{n(n-1)}{2} Q_n$$

- $\frac{\sum_{n=1}^{N} nQ_n}{\sum_{n=1}^{N} Q_n} \left(\sum_{n=1}^{N} nP_n - \sum_{n=1}^{N} nQ_n \right)$

Shift Register Comparison

Multiplicity Shift Register

Doubles =
$$\sum_{n=0}^{2} nPn = 0$$

0*1+1*1+2*1=3

Triples =
$$\sum_{n=0}^{2} \frac{n(n-1)}{2} Pn$$

= $\frac{0(0-1)}{2} \cdot 1 + \frac{1(1-1)}{1} \cdot 1$
+ $\frac{2(2-1)}{2} \cdot 1 = 1$
UNCLASSIFIED

Regular Shift Register

Doubles =
$$0+1+2=3$$

source neutrons = s. f. + (
$$\alpha$$
,n) neutrons
= $(1 + \alpha) v_{s1} F$

all emitted neutrons = M * source neutrons

all detected neutrons = ϵ * all emitted neutrons

Singles: $S = \varepsilon M (1 + \alpha) v_{s1} F$

Real Coincidence Rate or "Doubles"

Doubles from spontaneous fission = v_{s2} F

But there are no doubles from (α,n) unless the sample is multiplying.

So an equation for doubles needs three components:

- 1. doubles from s.f. source doubles,
- 2. doubles from i.f. of s.f. source singles, and
- 3. doubles from i.f. of (α,n) neutrons.

D = (f d / 2)
$$(\epsilon M)^2$$
 F { v_{s2} + $[(M-1)/(v_{i1}-1)] v_{s1}(1+\alpha) v_{i2}$ }

Triples

It is not so simple to write down an equation for triples

$$T = \frac{F\varepsilon^{3} f_{t} M^{3}}{6} \left\{ v_{s3} + \left(\frac{M-1}{v_{i1}-1} \right) \left[3v_{s2} v_{i2} + v_{s1} (1+\alpha) v_{i3} \right] + 3 \left(\frac{M-1}{v_{i1}-1} \right)^{2} v_{s1} (1+\alpha) v_{i2}^{2} \right\}$$

Changing Count Rate to Mass

 To determine the total Pu mass the isotopic values need to be known.

$$m_{Pu} = \frac{240Pu\% + 1.68(^{242}Pu\%)}{2.52(^{238}Pu) + ^{240}Pu\% + 1.68(^{242}Pu\%)}$$

$$m_{Pu} = \frac{240Pu_{eff}(g)}{2.52(^{238}Pu) + ^{240}Pu + 1.68(^{242}Pu)}$$

Example: 200 g of Pu with ²³⁸Pu=2%, ²⁴⁰Pu=24% and ²⁴²Pu=6%

$$^{240}Pu_{eff}\% = 2.52 \times 2\% + 24\% + 1.68 \times 6\% = 39.12\%$$

$$^{240}Pu_{eff} g = 39.12\% \times 200 \text{ g} = 78.24 \text{ g}$$

The Point Model Equations

$$S = F \varepsilon M v_{s1} (1 + \alpha)$$

$$D = F (f_d/2) (\varepsilon M) \{v_{s2} + [(M-1)/(v_{i1}-1)] v_{s1} (1 + \alpha) v_{i2} \}$$

$$T = F (f_t/6) (\varepsilon M)^3 \{v_{s3} + [(M-1)/(v_{i1}-1)] [3 v_{s2} v_{i2} + v_{s1} (1 + \alpha) v_{i3}] + 3[(M-1)/(v_{i1}-1)]^2 v_{s1} (1 + \alpha) v_{i2}^2 \}$$

where:

= detection efficiency

= fraction of doubles in the coincidence gate

= fraction of triples in the coincidence gate

= spontaneous fission rate = 473.5 n/s/g * effective PU-240 mass

= average number of neutrons produced per fission event (n=s -- spontaneous fission, n= i -- induced fission)

 v_{n2} = average number of neutron pairs produced per fission event v_{n3} = average number of neutron "triplets" produced per fission event

= ratio of (alpha, n) neutron rate to the spontaneous fission rate

M = fission multiplication

Mini-Epithermal Neutron Multiplicity Counter (miniENMC)

Los Alamos NATIONAL LABORATORY

- High-efficiency neutron counter (61.8%)
- Passive neutron coincidence and multiplicity counting
- Made for dirty scrap and bulk items
- Little a-priori knowledge of item required

Sample Cavity is 16 cm x 38 cm and is Cadmium Lined

